3.536 \(\int \frac{\sec ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=277 \[ \frac{b \left (a^2-3 b^2\right ) \sin (c+d x)}{a^2 d \left (a^2-b^2\right ) \sqrt{a+b \cos (c+d x)}}-\frac{\left (a^2-3 b^2\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a^2 d \left (a^2-b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}-\frac{3 b \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a^2 d \sqrt{a+b \cos (c+d x)}}+\frac{\tan (c+d x)}{a d \sqrt{a+b \cos (c+d x)}}+\frac{\sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a d \sqrt{a+b \cos (c+d x)}} \]

[Out]

-(((a^2 - 3*b^2)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(a^2*(a^2 - b^2)*d*Sqrt[(a +
b*Cos[c + d*x])/(a + b)])) + (Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(a*d*S
qrt[a + b*Cos[c + d*x]]) - (3*b*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/
(a^2*d*Sqrt[a + b*Cos[c + d*x]]) + (b*(a^2 - 3*b^2)*Sin[c + d*x])/(a^2*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]])
 + Tan[c + d*x]/(a*d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.780175, antiderivative size = 277, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 10, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.435, Rules used = {2802, 3056, 3059, 2655, 2653, 3002, 2663, 2661, 2807, 2805} \[ \frac{b \left (a^2-3 b^2\right ) \sin (c+d x)}{a^2 d \left (a^2-b^2\right ) \sqrt{a+b \cos (c+d x)}}-\frac{\left (a^2-3 b^2\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a^2 d \left (a^2-b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}-\frac{3 b \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a^2 d \sqrt{a+b \cos (c+d x)}}+\frac{\tan (c+d x)}{a d \sqrt{a+b \cos (c+d x)}}+\frac{\sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a d \sqrt{a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

-(((a^2 - 3*b^2)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(a^2*(a^2 - b^2)*d*Sqrt[(a +
b*Cos[c + d*x])/(a + b)])) + (Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(a*d*S
qrt[a + b*Cos[c + d*x]]) - (3*b*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/
(a^2*d*Sqrt[a + b*Cos[c + d*x]]) + (b*(a^2 - 3*b^2)*Sin[c + d*x])/(a^2*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]])
 + Tan[c + d*x]/(a*d*Sqrt[a + b*Cos[c + d*x]])

Rule 2802

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 -
 b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n
*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n
+ 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !
(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3056

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c +
d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), I
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*
(m + n + 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d*(A*b^2 + a^2*C)*(m + n + 3)
*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ
[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{\sec ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx &=\frac{\tan (c+d x)}{a d \sqrt{a+b \cos (c+d x)}}+\frac{\int \frac{\left (-\frac{3 b}{2}+\frac{1}{2} b \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx}{a}\\ &=\frac{b \left (a^2-3 b^2\right ) \sin (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}+\frac{\tan (c+d x)}{a d \sqrt{a+b \cos (c+d x)}}+\frac{2 \int \frac{\left (-\frac{3}{4} b \left (a^2-b^2\right )+\frac{1}{2} a b^2 \cos (c+d x)-\frac{1}{4} b \left (a^2-3 b^2\right ) \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{a^2 \left (a^2-b^2\right )}\\ &=\frac{b \left (a^2-3 b^2\right ) \sin (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}+\frac{\tan (c+d x)}{a d \sqrt{a+b \cos (c+d x)}}-\frac{2 \int \frac{\left (\frac{3}{4} b^2 \left (a^2-b^2\right )-\frac{1}{4} a b \left (a^2-b^2\right ) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{a^2 b \left (a^2-b^2\right )}-\frac{\left (a^2-3 b^2\right ) \int \sqrt{a+b \cos (c+d x)} \, dx}{2 a^2 \left (a^2-b^2\right )}\\ &=\frac{b \left (a^2-3 b^2\right ) \sin (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}+\frac{\tan (c+d x)}{a d \sqrt{a+b \cos (c+d x)}}+\frac{\int \frac{1}{\sqrt{a+b \cos (c+d x)}} \, dx}{2 a}-\frac{(3 b) \int \frac{\sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{2 a^2}-\frac{\left (\left (a^2-3 b^2\right ) \sqrt{a+b \cos (c+d x)}\right ) \int \sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}} \, dx}{2 a^2 \left (a^2-b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}\\ &=-\frac{\left (a^2-3 b^2\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a^2 \left (a^2-b^2\right ) d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{b \left (a^2-3 b^2\right ) \sin (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}+\frac{\tan (c+d x)}{a d \sqrt{a+b \cos (c+d x)}}+\frac{\sqrt{\frac{a+b \cos (c+d x)}{a+b}} \int \frac{1}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{2 a \sqrt{a+b \cos (c+d x)}}-\frac{\left (3 b \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{\sec (c+d x)}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{2 a^2 \sqrt{a+b \cos (c+d x)}}\\ &=-\frac{\left (a^2-3 b^2\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a^2 \left (a^2-b^2\right ) d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{\sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a d \sqrt{a+b \cos (c+d x)}}-\frac{3 b \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a^2 d \sqrt{a+b \cos (c+d x)}}+\frac{b \left (a^2-3 b^2\right ) \sin (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}+\frac{\tan (c+d x)}{a d \sqrt{a+b \cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 4.00339, size = 441, normalized size = 1.59 \[ \frac{\frac{4 \tan (c+d x) \left (b \left (a^2-3 b^2\right ) \cos (c+d x)+a^3-a b^2\right )}{\left (a^2-b^2\right ) \sqrt{a+b \cos (c+d x)}}-\frac{b \left (\frac{2 \left (7 a^2-9 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{\sqrt{a+b \cos (c+d x)}}-\frac{2 i \left (a^2-3 b^2\right ) \csc (c+d x) \sqrt{-\frac{b (\cos (c+d x)-1)}{a+b}} \sqrt{-\frac{b (\cos (c+d x)+1)}{a-b}} \left (2 a (a-b) E\left (i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )+b \left (2 a F\left (i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )-b \Pi \left (\frac{a+b}{a};i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )\right )\right )}{a b^2 \sqrt{-\frac{1}{a+b}}}-\frac{8 a b \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{\sqrt{a+b \cos (c+d x)}}\right )}{(a-b) (a+b)}}{4 a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

(-((b*((-8*a*b*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c + d*
x]] + (2*(7*a^2 - 9*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/Sqrt[a
+ b*Cos[c + d*x]] - ((2*I)*(a^2 - 3*b^2)*Sqrt[-((b*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[-((b*(1 + Cos[c + d*x])
)/(a - b))]*Csc[c + d*x]*(2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a +
b)/(a - b)] + b*(2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] - b*E
llipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)])))/(a*b^2*Sqrt[
-(a + b)^(-1)])))/((a - b)*(a + b))) + (4*(a^3 - a*b^2 + b*(a^2 - 3*b^2)*Cos[c + d*x])*Tan[c + d*x])/((a^2 - b
^2)*Sqrt[a + b*Cos[c + d*x]]))/(4*a^2*d)

________________________________________________________________________________________

Maple [B]  time = 8.279, size = 894, normalized size = 3.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(a+b*cos(d*x+c))^(3/2),x)

[Out]

-(-(-2*b*cos(1/2*d*x+1/2*c)^2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/a^2*b^2/sin(1/2*d*x+1/2*c)^2/(-2*sin(1/2*d*x
+1/2*c)^2*b+a+b)/(a^2-b^2)*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*((sin(1/2*d*x+1/2*c)^2
)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a
-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c)
,(-2*b/(a-b))^(1/2))*b+2*b*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)+2/a^2*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b
*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticP
i(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))+2/a*(-cos(1/2*d*x+1/2*c)/a*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2
*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)+1/2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-
b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*
b/(a-b))^(1/2))-1/2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*
x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+1/2/a*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1
/2*c)^2)^(1/2)*b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+1/2/a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*c
os(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(
cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))))/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{2}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^2/(b*cos(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{2}{\left (c + d x \right )}}{\left (a + b \cos{\left (c + d x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(a+b*cos(d*x+c))**(3/2),x)

[Out]

Integral(sec(c + d*x)**2/(a + b*cos(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{2}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^2/(b*cos(d*x + c) + a)^(3/2), x)